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ABSTRACT 

In this presented paper ring Homeomorphisms and Isomorphism theorems, a branch of abstract algebra, a ring 

homomorphism is a structure-preserving function between two rings. More explicitly, if R and S are rings, then a ring 

homomorphism is a function f : R → S such that f is Additive inverses and the additive identity are part of the structure 

too, but it is not necessary to require explicitly that they too are respected, because these conditions are consequences 

of the three conditions above. If in addition f is bisection, then its inverse f−1 is also a ring homomorphism. In this 

case, f is called a ring isomorphism, and the rings R and S are called isomorphic. From the standpoint of ring theory, 

isomorphic rings cannot be distinguished. If R and S are rings, then the corresponding notion is that of a ring 

homomorphism,[b] defined as above except without the third condition f(IR) = IS. A ring homomorphism between 

(unital) rings need not be a ring homomorphism. The composition of two ring homeomorphisms is a ring 

homomorphism. It follows that the class of all rings forms a category with ring homeomorphisms as the morphisms (cf. 

the category of rings). In particular, one obtains the notions of ring endomorphism, ring isomorphism, and ring auto 
orphism.  
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Introduction 

A map f : R→ S between rings is called a ring 

homomorphism if 

f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) for 

all x, y ∈ R. 

The function θ:R → R/I defined by rθ = I +r is 

a ring homomorphism (called the canonical 

homomorphism for I) and its kernel is I. First 

Isomorphism Theorem for Rings If R and S are 

rings and φ:R → S is a ring homomorphism 

then R/ker(φ) ∼ = Im(φ). for all r1, r2 in R, so 

ψ is a homomorphism. A homomorphismis a 

map between two groups which respects the 

group structure. More formally, let G and H be 

two group, and f a map from G to H (for every 

g ∈G, f(g)∈H). Then f is a homomorphism if 

for every g1,g2∈G, f(g1g2)=f(g1)f(g2). For 

example, if H<G, then the inclusion map I 

(h)=h∈G is a homomorphism. Another 

example is a homomorphism from Z to Z given 

by multiplication by 2, f (n) =2n. This map is a 

homomorphism since 

f(n+m)=2(n+m)=2n+2m=f(n)+f(m). 

Ring homomorphisms 

Definition Let R and S be rings, and let φ:R → 

S be a function. Then φ is a ring 

homomorphism if 

    (r1 +r2)φ = r1φ+r2φ   and  

= (r1r2)φ = (r1φ)(r2φ)        for all r1, r2 in R. 

 

Aring homomorphism which is a bijection is 

called an isomorphism. If there is an 

isomorphism φ from R to S then φ−1 is also an 

isomorphism and R is isomorphic to S, written 

R ∼S 
Definition If φ:R → S is a ring homomorphism 

then the image of φ is {rφ: r ∈R}, written 

Im(φ), and the kernel of φ is {r ∈ R : rφ = 0S}, 

written ker(φ).  

Theorem 

If φ:R→S is a ring homomorphism then  

(a) Im(φ) is a subring of S;  

(b) ker(φ) is an ideal of R;  

(c) r1 φ =r2φif and only if r1 and r2 are in the 

same coset of ker(φ).  

Proof 

(a) We know that (Im (φ),+) is a subgroup of 

(S,+), from the similar theorem for groups. If s1 

and s2 are in ker(φ) then there are r1, r2 in R 

with r1φ = s1 and r2φ =s2.  

Then s1s2 =(r1φ)(r2φ) = (r1r2)φ ∈ker(φ),  

so Im(φ) ⩽ S.  

(b) We know that (ker(φ),+) is a subgroup of 

(R,+), from the group theory. If r ∈ker(φ) andt 

∈Rthen(rt)φ=(rφ)(tφ)=0S(tφ)=0S  

and (tr)φ=(tφ)(rφ)= (tφ)0S = 0S.  

Thus rt ∈ ker(φ) and tr ∈ ker(φ).  

Therefore ker(φ)⊴R. 1 

(c) We know this because φ:(R,+) → (S,+) is a 

group homomorphism.  
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The theorem has been stated in this way 

because parts (a) and (b) are so important. 

However, essentially the same proof can 

generalize part (a) to the image of any subring 

of R, and generalize part (b) to the inverse 

image of any subring or ideal of Im(φ).. 

Theorem: 

1) If φ:R→S is a homomorphism of rings, 
then the kernel of φ is an ideal of R, the 
image of φ is a subring of S and R/kerφ is 
isomorphic as a ring to φ(R). 
2) If I is any ideal of R, then the 
map RR/Idefined by r→r+I is a surjective 
ring homomorphism with kernel I. Thus, 
every ideal is the kernel of a ring 
homomorphism and vice versa. 

Proof: Let φ:R→S be a ring 
homomorphism. Ifr∈R and r′∈kerφ, then 
wehave r∈kerφ (so that it is closed under 
multiplication by elements of R) since 
 
φ(rr′)=φ(r)φ(r′)=φ(r)0=0=0φ(r)=φ(r′)φ(r)
=φ(r′r); 
 

since kerφ is also a subring of R, it is an 
ideal of R. It's clear that φ(R) is a subring 
of S. Now, let an ideal of R, so that R/I is 
also a ring, and define f:R→R/I by f(r)=r+I. 
We know f is a group homomorphism with 
kernelI, and for r,s∈R, we have 
 

f(rs)=(rs)+I=(r+I)(s+I)=f(r)f(s), 
 
so that f is in fact a ring homomorphism.  
 
Define then ϕ:R/kerφ→φ(R) 
Let kerφ=H 
 by 
ϕ(r+(H))=φ(r), 
 
for each (r+(H))∈R/H, for some r∈R. This is 
well defined because 
 
 
if r′∈(r+(H)),, then 
 

ϕ(r′+(H))=φ(r′)=φ(r)=ϕ(r+(H)) 
Also, this is a ring isomorphism because 
for each (s)∈φ(R) for some s∈R, we have 
 

(∗) ϕ−1{φ(s)}=ϕ−1φ[r+(H)]=ϕ−1φ[f−1{r+(
H)}]={r+(H)}, 
 
a set with a single element of R/H, so that it 
is a bijection, ϕ is injective, say 
r+kerφ∈kerϕ i.e 
0=ϕ (r+kerφ) = φ (r)  
Which means r ∈kerφ, which then implies 
r+kerφ=0+ker φ. So 
ker ϕ={0+ker φ} 
Similar that we can prove ϕ is surjective, 
since for every y ∈φ ( R ), their as exist r ∈ R, 
Such that 
 y= φ (r) = ϕ (r+ker φ) 
 
and for every r+(H), for some r,r′∈R, we 
have 

ϕ[(r+(H))+(r′+(H))]=ϕ[(r+r′)+(H)]=φ(r+r′)
=φ(r)+φ(r′)=ϕ[r+(H)]+ϕ[r′+(H)], 
and 
 

ϕ[(r+(H))(r′+(H))]=ϕ[(rr′)+(H)]=φ(rr′)= 
φ(r) φ(r′)=ϕ[r+(H)]ϕ[r′+(H)], 

 
so that it is a ring homomorphism. 

 

The principal result is the following theorem: 

THEOREM. Let A and B be rings, a two-sided 

ideal of A, b a two-sided ideal of B and q : A + 

B a ring homomorphism inducing an 

isomorphism A/a z B/b. If p induces an 

isomorphism a/a” z b/b2 and an epimorphism 

q~* : Tort (A/a, A/a) + Torf (B/b, B/b), then v 

induces isomorphisms a”/a”+l G bn/b”fl and 

for n > 1. We then give some applications to 

supplemented algebras, graded algebras and 

free algebras.  

 

Factor rings and the isomorphism theorems 

We parallel the development of factor groups 

in Group theory. 

Definition 

If I is an ideal of a ring R and a ∈ R then 

a coset of I is a set of the form a + I = 

{a + s | s I }. 

The set of all cosets is denoted by R/I. 

Theorem 

If I is an ideal of a ring R, the set R/I is a ring 

under the operations 

(a + I) + (b + I) = (a + b) + I and (a + I) . 

(b + I) = (ab) + I. 
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Proof 
We need to check that the operations are "well-

defined". That is if a1 and a2 are representatives 

of the same coset and b1 and b2 represent the 

same coset then a1 + b1 and a2 + b2 represent 

the same coset and so do a1b1 and a2b2. 

We have a1 - a2∈ I and b1 - b2∈ I and so adding 

these shows that (a1 + b1) - (a2 + b2) ∈ I and so 

these do represent the same coset. 

Similarly, for the product, observe that a1b1 -

 a2b2 = (a1 - a2)b1 + a2(b1 - b2) and the result 

follows from the properties of the ideal. 

Once you know that the operations are well-

defined the ring axioms follow easily. 

Note that the zero of the factor ring is the coset 

0 + I or the ideal I itself. 

Permutations and Group action 

Since we introduced the definition of group as 

a set with a binary operation which is closed, 

we have been computing things internally, that 

is inside a group structure. This was the case 

even when considering Cartesian products of 

groups, where the first thing we did was to 

endow this set with a group structure. 

In this section, we wonder what happens if we 

have a group and a set, which may or may not 

have a group structure. We will define a group 

action that is a way to do computations with 

two objects, one with a group law, not the other 

one. 

 

Monomorphisms: 

Injective ring homomorphisms are identical 

to monomorphisms in the category of rings: 

If f : R → S is a monomorphism that is not 

injective, then it sends some r1 and r2 to the 

same element of S. Consider the two 

maps g1 and g2 from Z[x] to R that 

map x to r1 and r2, 

respectively; f ∘ g1 and f ∘ g2 are identical, but 

since f is a monomorphism this is impossible. 

However, surjective ring homomorphisms are 

vastly different from epimorphisms in the 

category of rings. For example, the 

inclusion Z ⊆ Q is a ring epimorphism, but not 

a surjection. However, they are exactly the 

same as the strong epimorphisms. 

Ring Homomorphism and Ideals: 

In the study of groups, a homomorphism is a 

map that preserves the operation of the group. 

Similarly, a homomorphism between rings 

preserves the operations of addition and 

multiplication in the ring. More specifically, 

if R and S are rings, then a ring 

homomorphism is a  

 

map ϕ:R→S satisfying 

ϕ(a+b)=ϕ(a)+ϕ(b)  and ϕ(ab)=ϕ(a)ϕ(b) 

 

for all .a,b∈R. If ϕ:R→S is a one-to-one and 

onto homomorphism, then ϕ is called 

an isomorphism of rings. 

Example: For any integer n we can define a 

ring 

homomorphism ϕ:Z→Zn by .a↦a(modn). This 

is indeed a ring homomorphism, since 

ϕ(a+b)=(a+b)(modn)=a(modn)+b(modn)=ϕ(a)

+ϕ(b) 

and 

ϕ(ab)=ab(modn)=a(modn)⋅b(modn)=ϕ(a)ϕ(b). 

The kernel of the homomorphism ϕ is . 

 

Statement of the theorems:- 

Theorem A (groups):- 
Let G and H be groups, and let f: G → H be 

a homomorphism. Then: 

1. The kernel of f is a normal subgroup of G, 

2. The image of f is a subgroup of H, and 

3. The image of f is isomorphic to the quotient 

group G / ker(f). 

In particular, if f is surjective then H is 

isomorphic to G / ker(f). 

 Diagram of the fundamental theorem on 

homomorphisms 
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Discussion 

The first isomorphism theorem can be 

expressed in category theoretical language by 

saying that the category of groups is (normal 

epi, mono)-factorizable; in other words, 

the normal epimorphisms  and the 

 monomorphisms  form a  factorization system 

for the category. This is captured in the  

commutative diagram in the margin, which 

shows the objects and morphisms. Whose 

existence can be deduced from the morphism.  

The diagram shows that every morphism in the 

category of groups has a kernel in the category 

theoretical sense; the arbitrary morphism  

f factors into where ι is a monomorphism 

and f is an epimorphism (in a conormal 

category, all epimorphisms are normal). This is 

represented in the diagram by an object and a 

monomorphism are always monomorphisms), 

which complete the short exact 

sequence running from the lower left to the 

upper right of the diagram. 
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